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Abstract

Defending adversarial attacks is a critical step towards

reliable deployment of deep learning empowered solutions

for biometrics verification. Current approaches for de-

fending Black box models use the classification accuracy

of the Black box as a performance metric for validating

their defense. However, classification accuracy by itself is

not a reliable metric to determine if the resulting image is

“adversarial-free”. This is a serious problem for online

biometrics verification applications where the ground-truth

of the incoming image is not known and hence we cannot

compute the accuracy of the classifier or know if the image

is ”adversarial-free” or not. This paper proposes a novel

framework for defending Black box systems from adversar-

ial attacks using an ensemble of iterative adversarial image

purifiers whose performance is continuously validated in a

loop using Bayesian uncertainties. The proposed approach

is (i) model agnostic, (ii) can convert single step black box

defenses into an iterative defense and (iii) has the ability to

reject adversarial examples. This paper uses facial recogni-

tion as a test case for validating the defense and experimen-

tal results on the MS-Celeb dataset show that the proposed

approach can consistently detect adversarial examples and

purify/reject them against a variety of adversarial attacks

with different ranges of perturbations.

1. Introduction

Deep learning has achieved impressive performance [5,

29, 33, 34], significantly improving the development for a

variety of biometrics applications [4, 6, 46, 48, 49, 55, 59,

67, 72]. However, it has been shown that deep learning clas-

sifiers are vulnerable to adversarial attacks which are inten-

tionally designed to cause misclassifications [30, 37, 60].

These attacks are carefully crafted perturbations, added to

an image that are visually imperceptible to the human eye,

and they can cause deep learning models to misclassify the

image with high confidence. In the domain of adversarial

attacks, there are two types of threat models: 1) White box,

and 2) Black box attacks. In the white box setting [10], the

attacker has full knowledge about the classification model’s

parameters and architecture, whereas in the Black box set-

ting [50] the attacker does not have this knowledge. In this

paper we focus on the Black box based adversarial attacks.

Current defenses against adversarial attacks can be clas-

sified into four approaches: 1) modifying the training data,

2) modifying the model, 3) using auxiliary tools, and

4) detecting and rejecting adversarial examples. Modi-

fying the training data involves augmenting the training

dataset with adversarial examples and re-training the classi-

fier [22, 30, 64, 73] or performing N number of pre-selected

image transformations in a random order [13, 17, 26, 52].

Modifying the model involves pruning the architecture of

the classifier [38, 51, 69] or adding pre/post-processing lay-

ers to it [9, 12, 71]. These approaches are not compatible

to be used for defending Black box models. Using aux-

iliary tools involves having an independent module that is

able to process the input before it is passed to the clas-

sifier [43, 57, 62? ]. Detecting and rejecting adversarial

examples involve using domain adaptation techniques and

carrying out statistical analysis [20, 25, 40] to detect ad-

versarial examples. The approaches in the latter two cate-

gories are the most suitable for defending Black box clas-

sifiers. A drawback of these approaches is that, they do

not quantify how much adversarial component is left in the

resulting purified image and they perform well only under

weakly bounded adversarial perturbations. This is very im-

portant, especially for online biometrics verification sys-

tems, because an adversary can always use an attack with

a comparatively higher perturbation that is just enough to

fool the system. Even though it is trivial for an attacker to

increase the adversarial perturbation as they are relatively

more discernible to the human eye, this is not the case for

safety-critical applications that do not have a human in the

loop. Additionally, the adversary can also use physical ad-

versarial attacks as shown in [36, 63, 70] which are not very

obvious to the human eye. Thus, in biometrics verification

approaches where there is no human intervention, it is very

important to quantify/explain the adversarial component in

the resulting image of any adversarial defense.

To overcome this problem, this is the first paper that pro-
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Name Domain Comments

Adversarial attacks in face biometrics

Goswami et al. [23] Black box Used image and face level distortions to attack face recognition systems

Bosse et al. [8] White box Used adversarial transformers and attacked Faster RCNN to obfuscate the person

Dong et al. [16] Black box Used evolutionary algorithms to create adversarial examples

Lu et al. [41] White box Used FGSM attack to create a single noise for all frames in a video

Milton [44] Black box Used a momentum based FGSM attack and knowledge distillation to attack CNNs

Zhou et al. [75] White box Used infrared LEDs attached to a head wear to create physical adversarial examples

Deb et al. [14] White box Used GAN [21] to generate adversarial perturbations in subtle facial regions

Adversarial defenses in face biometrics

Wadhwa et al. [65] Black box
Used GAN [21] to detect adversarial authentications using differences between the

classification and matching thresholds

Agarwal et al. [2] Black box
Used Haralick texture features from discrete wavelet transformed frames for

classification using PCA + SVM

Goswami et al. [24] White box
Used the representation of the hidden layers to detect adversarial attacks and

performed selective dropout on the affected filters.

Agarwal et al. [1] Black box
Used transformations such as gamma correction, log transform, and brightness

control to fool face presentation attack detection algorithms.

Tao et al. [61] White box Used activation of hidden layers to determine if the CNN is looking at facial regions

Agarwal et al. [3] White box Used PCA + SVM to detect the presence of universal attack

Table 1: State-of-the-art of adversarial attacks and defenses in the domain of face biometrics

poses to use an ensemble of iterative adversarial image pu-

rifiers whose performance is validated by quantifying the

remaining amount of adversarial component after each it-

eration of purification using Bayesian uncertainties. By do-

ing so, the proposed approach is able to quantify after each

iteration if the resulting image is adversarial or not without

the need for any ground-truth/human observer. Experimen-

tal results show that using an ensemble of adversarial de-

fenses performs much better than using a single stand-alone

defense. It should be noted that the scope of this paper is

not to design a robust facial recognition classifier, but in-

stead, to design a robust defense to protect existing facial

recognition classifiers from adversarial attacks.

2. Adversarial Defenses and Attacks in Face

Biometrics

Table 1 shows a brief summary of the adversarial defense

and attacks used in the field of face biometrics. In summary

the contributions of this paper are:

• Defending Black box classifiers using an ensemble of

independent iterative adversarial image purifiers.

• Validating the performance of the proposed defense

continuously in a loop using Bayesian uncertainties

and classification accuracy.

• The proposed approach is model agnostic and can con-

vert any single step adversarial image purifier into an

iterative adversarial image purifier.

3. Technical Approach

In this section we explain the individual modules of our

approach shown in Fig. 1. The input image (X) first passes

through the Bayesian CNN and if the image is adversarial,

it is purified by the ensemble of defenses and the resulting

purified image (X ′
1) is passed as input back to the Bayesian

CNN. If X ′
1 is not adversarial it is passed as input to the

Black box classifier. If X ′
1 is still adversarial it is passed

back to the ensemble of defenses and this continues for M

iterations. After M iterations of purification, if X ′
M is still

adversarial then the image is rejected.

Figure 1: Overall framework of our approach.
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• Assumptions of our Defense: 1) The output of the Black

box model is the top predicted class without any probabil-

ities. 2) The architecture, parameters and entire training

dataset of the Black box are not known to both the adversary

and the defense algorithm. 3) The outputs of the Bayesian

framework and ensemble of adversarial image purifiers are

not shared with the adversary (i.e., the adversary can only

see the output of the Black box).
• Target Applications for our Defense: Our defense is

suited for Black box applications that contain sensitive per-

sonnel information such as human biometrics for remote

monitoring. These are critical applications that require se-

curity against adversarial attacks and preserve user privacy

and do not want to give up sensitive information.

3.1. Threat Models

In this sub-section we define the adversarial attacks used

for evaluating our defense. For a given test image-label pair

(x, y), adversarial attacks find a perturbation δ with ||δ||∞
≤ ǫ such that a deep learning classifier f(·) results in f(x+
δ) 6= y. ǫ is a hyper-parameter that sets the perturbation

limit for each pixel in x on the color scale.
• Fast Gradient Sign Method (FGSM) [22]: This attack

uses the sign of the gradients at every pixel to determine the

direction of perturbation.

xadv = x + ǫ · sign(▽xL(x, y)) (1)

• Basic Iterative Method (BIM) [36]: This attack extends

the FGSM attack [22] by iterating it multiple times with a

small step size.

xadv
n+1 = Clipǫ(xn + α · sign(▽xL(xn, y))) (2)

• Projected Gradient Descent [42]: This attack computes

the gradient in the direction of the highest loss and projects

it back to the lp norm around the sample.

xadv
n+1 =

ǫ∏
(xn + α · sign(▽xL(xn, y))) (3)

In eq. (1) - (3), ▽xL(x, y) is the loss function used to train

the CNN, α is the iterative step size, Clip (·) and
∏

(·) are

the clipping and projection functions, respectively.

3.2. Create a Substitute Model Using Knowledge
Distillation

Since we do not know the architecture/parameters of the

Black box CNN, we cannot directly apply our defense al-

gorithm. To solve this we create a Substitute for the Black

box model using Knowledge Distillation. Knowledge Dis-

tillation is the process of transferring functionality from a

Teacher model to a Substitute model [11, 19, 47]. We as-

sume the Black box CNN is deterministic (the weights do

not change after training) and ignore approaches that incre-

mentally update the weights of the CNN in an online man-

ner (i.e., incremental [74] and reinforcement learning [53]).

Knowledge Distillation on the MS-Celeb [27] dataset:

The MS-Celeb dataset consists of approximately 9.5M im-

ages for 99,892 celebrities. It has been shown that this

dataset is extremely noisy with many incorrect annota-

tions [15, 39, 66, 68]. This problem is pervasive since it is

very time consuming to annotate very large scale datasets.

In order to reduce the noise due to incorrect annotation,

we followed the approach of Jin et al. [32]. The authors

proposed a graph-based cleaning method that mainly em-

ploys the community detection algorithm [18] and deep

CNN models to delete mislabeled images. Based on this

method, the authors provided a list of correctly annotated

images and showed that approximately 97.3% of images in

the dataset are correctly labeled. This results in a total of

approximately 6.5M images for 94,682 celebrities.

In order to train a Black box facial recognition classifier,

we manually selected 100 celebrities that had at least 100

images after discarding images that had extremely skewed

poses and celebrities wearing sunglasses. We denote this

dataset as Q1:100 (Qi is the identity of the celebrity) and

it is used for training the Black box classifier only. In or-

der to train a Substitute model we need to first create a

pseudo-labeled dataset. To do this, we probed the Black

box CNN with images of celebrities that do not belong in

Q1:100 and labeled the images with the predicted class. We

denote this dataset as Q101:∞ and it is used to train the Sub-

stitute model. It should be noted that the dataset Q1:100

and Q101:∞ contain images of different celebrities and their

data distributions do not overlap (ignoring the noise due

to incorrect annotations). Although, we do not know the

identities of the celebrities in Q1:100, we assume that we

have knowledge about the total number of celebrities the

Black box CNN can recognize. In our case it is 100 celebri-

ties. Based on this we probed the Black box CNN with the

Q101:∞ dataset until each class has at least 3,000 images.

Although the Substitute model is trained on a dataset

that is entirely different from the dataset used for training

the Black box CNN, we are still able to distill some of the

learned features of the Black box CNN. The reason for this

is that the Black box CNN is a deterministic model mean-

ing that, after training, the features learned are fixed and do

not change over time. Hence, when we probe the Black box

CNN f(·) with a given image X , the resulting prediction

Y will never change and with a considerably large and di-

verse dataset (i.e., dataset larger than the dataset used for

training the Black box CNN), the Substitute model is able

to mimic the learned features of the Black box CNN and

achieve good classification accuracy on the testing dataset

belonging to Q1:100. This observation has not been ad-

dressed in the fields of face biometrics and is very advan-
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tageous because of the abundance of unrestricted images

available in the public domain that can effectively be used

for distilling the knowledge of Black box facial recognition

classifiers.

3.3. Detecting Adversarial Attacks using Bayesian
Uncertainties

From the probability theory perspective, it is unjustifi-

able to use classifiers with single point estimates in bio-

metrics verification applications because a misclassification

could lead to disastrous results. In the domain of adver-

sarial defense, it is very important to know the amount of

adversarial perturbation that still remains in the output of

any defense algorithm. Bayesian networks have the ability

to provide uncertainty estimates based on the CNNs param-

eters [7, 28, 54, 56].

Deep learning models are parameterized by a set of

weights w and trained with a labeled dataset D =
{xi, yi}

N
i=1, where xi and yi are the input data and corre-

sponding ground-truth, respectively. Bayesian inference for

these models involves learning a posterior distribution over

the weights p(w|D) which is used for predicting unseen ob-

servations given by:

p(y|x,D) =

∫
p(y|x,w) p(w|D)dw (4)

The above integral is intractable in deep learning models be-

cause of the sheer number of parameters and non-linearities.

To overcome this, in our approach we design the Bayesian

CNN using Bayes by Backprop [7]. Bayes by Backprop is

a variational inference to learn the posterior distribution of

the weights w of a Neural Network from which the weights

can be sampled in back propagation. This approach as-

sumes an approximate distribution qθ(w|D) (θ are the pa-

rameters of the distribution) that is supposed to be similar

to the true posterior p(w|D) when measured by the KL di-

vergence [35]. Based on this the optimal parameters are

defined as:

θopt = argmin
θ

KL(qθ(w|D)||p(w))

− Eq(w|θ)(log p(D|w)) + log p(D)
(5)

After learning the approximate posterior distribution we

compute the Bayesian uncertainties given by:

Aleatoric Uncertainty =
1

T

T∑
t=1

diag(ĝt) − ĝt ĝ
T
t (6)

Epistemic Uncertainty =
1

T

T∑
t=1

(ĝt − g̃)(ĝt − g̃)T (7)

where, T is the number of samples drawn from the pos-

terior distribution, g̃ = 1
T

∑T

t=1 ĝt and ĝt = fwt
(x). It

should be noted that we trained the Bayesian CNN using

the same pseudo-labeled dataset used for training the Sub-

stitute model described in the previous sub-section.

3.4. Ensemble of Image Purifiers

Image purifiers are generative networks that can be used

in conjunction with any classifier as a pre-processing step

without modifying the structure of the classifier. These ap-

proaches do not assume any attack model and are attack

agnostic. This paper extends upon the prior work done by

Theagarajan et al. [62] by including additional state-of-the-

art image purifiers into an ensemble to further improve the

defense and continuously validate their performance in a

loop to quantify the amount of adversarial component re-

maining after each iteration of purification (see Fig. 1).

We used an ensemble of independently trained defenses be-

cause the predictions of an ensemble are empirically more

accurate than predictions made by a stand alone defense and

adversarial attacks that fool one defense do not necessarily

fool all the other defenses in the same way [58, 64, 76]. We

empirically verify this in the experimental results in Section

4. We chose to use PixelDefend [57], and MagNet [43] in

our ensemble because they achieve state-of-the-art results

for White/Black box defense and do not require any modi-

fications. It should be noted that any defense that does not

modify the structure/parameters of the Black box can be in-

cluded in the ensemble.

The individual image purifiers are independently trained

to defend the Substitute CNN using the same pseudo-

labeled dataset used for training the Substitute CNN. After

training, they are deployed to defend the Black box model

and the output of the ensemble is the average of the output

of the individual image purifiers.

3.5. Determining if an Image is Adversarial

After training the Bayesian CNN, in order to find the

minimum uncertainty to classify an input image as adver-

sarial, we generated adversarial examples with the smallest

perturbation (i.e. ǫ = 1/255) for the Substitute model using

the three adversarial attacks described in Section 3.1 and

transferred these adversarial images to the Bayesian CNN.

We trained two different architectures of Bayesian CNNs

with two different initialization conditions each and com-

puted the average average (µ) and standard deviation (σ) of

the Epistemic and Aleatoric uncertainties. We then set two

thresholds t1 and t2 which are given by:

t1 = µ(Aleatoric) − 3σ(Aleatoric) (8)

t2 = µ(Epistemic) − 3σ(Epistemic) (9)

If an input image has at least one uncertainty greater than

its corresponding threshold, we classify it as an adversarial

image and pass it as input to our ensemble of adversarial

defenses as shown in Fig. 1.
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3.6. Determining the Number of Iterations for Pu
rification (M)

In Fig. 1, M is the maximum number of iterations an im-

age can be purified before being (a) passed as input to the

black box CNN or (b) rejected. The reason for this is that

in our approach we observed that after a certain number of

iterations (M ), the amount of purification done during each

iteration drastically decreases and the ensemble does purify

the image after M iterations. Hence, in order to prevent our

defense from getting locked in an infinite loop of purifica-

tion, we set a threshold (M ) on the maximum number of

iterations of purification before rejecting an image. In or-

der to empirically determine the value of M , we attacked

the Substitute CNN using the three iterative attacks with ǫ

= (5, 10, 15, 20, 25)/255. We chose the values of ǫ within

the range of (5 - 25)/255 because this is the range an ad-

versarial attack is likely to fool a human observer, and ǫ >

0.1 makes the resulting images with adversarial noise (from

our dataset) more discernible to the human eye (see Fig. 4).

The resulting adversarial images are then passed as input to

our ensemble of image purifiers for six iterations. From this

we quantify the amount of purification done by measuring

the l2 distance between the input and output at the current

iteration. Fig. 2 shows the plot for the amount of purifica-

tion VS. the number of iterations for the MS-Celeb testing

dataset [27] dataset with ǫ = (15, 25)/255.

Figure 2: Amount of purification VS. the number of itera-

tions using the MS-Celeb dataset for the FGSM, BIM, and

PGD attacks with ǫ = (15,25)/255

From Fig. 2, it can be seen that after 4 iterations the

amount of purification does not significantly change for the

MS-Celeb dataset. Hence, we empirically set the value of

the number of iterations of purification in our approach to

be M = 4 for the MS-Celeb dataset. If the amount of uncer-

tainty after M iterations is still greater than the thresholds t1

and t2, we can safely reject the image. This situation arises

when the perturbation created by an adversary is very large.

4. Experimental Results

4.1. Datasets and CNN Architectures

We evaluated our approach on the publicly available MS-

Celeb [27] dataset. The MS-Celeb [27] dataset consists of

approximately 9.5M RGB cropped facial images of 99,892

celebrities. As previously described in Section 3.2, we se-

lected 100 celebrities with at least 100 images after filtering

noisy images as the training dataset. We used 75% of this

data for training and the remaining 25% for testing. All the

images in the MS-Celeb dataset were resized to a size of

128 × 128.

CNN Architectures

Target Black Box CNN VGG

Defense Substitute CNN ResNet

Bayesian CNN Bayesian ResNet

Adversary’s Substitute CNN ResNet

Table 2: CNN architectures

Table 2 shows the architectures of the CNN used in our

defense. For a fair comparison with ShieldNets [62], the ar-

chitecture of the CNNs in Table 2 are the same as described

in [62]. We evaluated our black box defense by creating an

adversarial Substitute CNN and transferred the adversarial

images generated for the adversary’s Substitute as input to

our defense [45, 50]. It should be noted that in Table 2 we

used the same CNN architecture and training data for our

defense’s Substitute as well as the adversary’s Substitute.

By doing so we are giving the adversary equal knowledge

as to our Substitute model in order to have a fair evaluation

of our defense.

4.1.1 Results on MS-Celeb Dataset

In order evaluate the performance of the Black box classi-

fier when there is no adversarial attack, we performed 4-fold

cross validation on the Black box using the training dataset

Q1:100 and achieved 90.32 ± 1.56% accuracy. We evalu-

ated our defense on the MS-Celeb dataset in two different

settings based on the training data distribution of the Black

box CNN (DBbox) and or defense (DDef ) namely: (i) no

overlap between DBbox and DDef , and (ii) 50% overlap

between DBbox and DDef . Tables 3 and 4 show the per-

formance of our defense and comparison for each of the

settings, respectively.
• No overlap between DBbox and DDef : From Table 3 we

can see that our defense is able to achieve at least 63.71%

classification accuracy against adversarial attacks when ǫ ≤
0.1 and outperforms the state-of-the-art defenses. The rea-

son for this is that although our defense has not seen any
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Training data = Black box: DBbox = Q1:100, Defense: DDef = Q101:∞

ǫ = 0.05 (13/255) ǫ = 0.1 (25/255)

t1 = 0.0588 t2 = 0.0656 t1 = 0.0588 t2 = 0.0656

Attack Defense
Acc.

(%)

Avg. Aleatoric

uncertainty

Avg. Epistemic

uncertainty

Acc.

(%)

Avg. Aleatoric

uncertainty

Avg. Epistemic

uncertainty

FGSM

No Defense 27.65 0.0961 ± 0.0106 0.0935 ± 0.0092 19.33 0.1207 ± 0.0100 0.1174 ± 0.0095

MagNet 66.22 0.0472 ± 0.0090 0.0568 ± 0.0084 61.04 0.0547 ± 0.0102 0.0591 ± 0.0092

ShieldNets 67.46 0.0480 ± 0.0086 0.0512 ± 0.0079 60.58 0.0561 ± 0.0086 0.0613 ± 0.0084

Ensemble 69.84 0.0355 ± 0.0080 0.0408 ± 0.0073 64.52 0.0497 ± 0.0107 0.0588 ± 0.0090

BIM

No Defense 30.70 0.1107 ± 0.0097 0.0957 ± 0.0107 17.86 0.1297 ± 0.0116 0.1305 ± 0.0093

MagNet 63.53 0.0511 ± 0.0081 0.0572 ± 0.0087 59.72 0.0534 ± 0.0095 0.0602 ± 0.0090

ShieldNets 66.39 0.0453 ± 0.0094 0.0534 ± 0.0085 62.11 0.0530 ± 0.0081 0.0585 ± 0.0086

Ensemble 70.60 0.0359 ± 0.0102 0.0395 ± 0.0094 64.55 0.0502 ± 0.0079 0.0573 ± 0.0095

PGD

No Defense 25.08 0.1057 ± 0.0112 0.1088 ± 0.0097 20.40 0.1228 ± 0.0116 0.1244 ± 0.0109

MagNet 62.30 0.0526 ± 0.0079 0.0558 ± 0.0087 59.33 0.0540 ± 0.0091 0.0611 ± 0.0088

ShieldNets 64.21 0.0512 ± 0.0093 0.0597 ± 0.0102 59.74 0.0539 ± 0.0089 0.0594 ± 0.0091

Ensemble 68.09 0.0406 ± 0.0108 0.0481 ± 0.0110 63.71 0.0514 ± 0.0075 0.0580 ± 0.0094

Table 3: Classification accuracy and uncertainty metrics of our defense on the MS-Celeb dataset with no overlap between the

training data of the Black box CNN (DBbox) and our defense (DDef ).

data of the original facial identities, we are still able to dis-

till some knowledge by probing the Black box CNN with a

significantly large and diverse dataset.
• 50% overlap between DBbox and DDef : Comparing Ta-

bles 3 and 4 when there is overlap between the training dis-

tributions, there is a slight improvement in classification ac-

curacy. Additionally, in Table 3 when ǫ = 0.1 some of the

adversarial/purified images had uncertainty values beyond

the thresholds (t1 and t2) and these images would be re-

jected, but in Table 4 when we have 50% overlap between

the training distributions, the resulting uncertainty values

for these images are significantly lower. This indicates that

our defense is able to distill better features from the Black

box such that the resulting purified images from Table 4 are

relatively more “adversarial-free” compared to the images

from Table 3 which improves the classification accuracy.

4.2. Visual Comparison of the Average Purified Im
ages During Each Iteration of Purification

Fig. 3(a) shows adversarial images of different celebri-

ties created using the FGSM attack with ǫ = 0.1. Fig. 3(b)

- 3(d) shows the corresponding images in Fig. 3(a) after

each iteration of purification, respectively. After three iter-

ations of purification the images in Fig. 3(d) were correctly

classified by the Black box classifier.

4.3. Experimental Results when ǫ > 0.1

Table 5 shows the Black box classification accuracy and

uncertainty metric of our defense when ǫ = 0.2. It can be

seen that the performance drastically declines when ǫ is

greater than 0.1. Although there is a significant drop in ac-

In Tables 3 - 5 for the MS-Celeb dataset, Ensemble refers to ShieldNets +

MagNet + PixelDefend.

curacy, there is a sharp increase in the uncertainty metrics

and it can be observed that all of the values are well above

the thresholds (t1 and t2). This means that all of the adver-

sarial images in Table 5 would be rejected without passing

as input to the Black box classifier. This is even more ev-

ident in Fig. 4(a), where lots of articulations can be seen

in the image when we use the FGSM attack with ǫ = 0.2.

Fig. 4(b) shows the corresponding images in Fig. 4(a) that

were rejected after 4 iterations of purification. From Fig.

4(a) and 4(b), we can observe that the articulations in the

resulting adversarial images are noticeable to a human ob-

server and, thus, it is very trivial for an attacker to try to

fool a biometrics system by just increasing the adversarial

perturbation.

4.4. Robustness of our Defense  An Adversary’s
Point of View

In this sub-section we describe various approaches from

an adversary’s point of view to beat our defense.

• Attacking the Ensemble of Defenses: Since we are not

sharing any information about our defense with the adver-

sary as discussed in Section 3, a trivial way for an adversary

to attempt to break our defense would be to fool the ensem-

ble of adversarial defenses by probing our system and cre-

ating a perturbation large enough that can fool all of the in-

dividual defenses in our ensemble. But, as shown in Table

5 as the magnitude of perturbation increases, the value of

the uncertainty metrics of the Bayesian CNN also increase.

Hence the Bayesian CNN would be able to detect and reject

the resulting adversarial image.

• Attacking the Bayesian CNN: In our defense the

Bayesian CNN decides if an incoming image is adversar-

ial or not before (i) passing it to the Black box classifier or
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Training data = Black box: DBbox = Q1:100, Defense: DDef = 0.5 ·Q1:100 + Q101:∞

ǫ = 0.05 (13/255) ǫ = 0.1 (25/255)

t1 = 0.0562 t2 = 0.0624 t1 = 0.0562 t2 = 0.0624

Attack Defense
Acc.

(%)

Avg. Aleatoric

uncertainty

Avg. Epistemic

uncertainty

Acc.

(%)

Avg. Aleatoric

uncertainty

Avg. Epistemic

uncertainty

FGSM

No Defense 27.65 0.0927 ± 0.0097 0.0911 ± 0.0091 19.33 0.1135 ± 0.0114 0.1121 ± 0.0108

MagNet 69.53 0.0444 ± 0.0078 0.0481 ± 0.0080 64.82 0.0496 ± 0.0093 0.0533 ± 0.0085

ShieldNets 68.15 0.0463 ± 0.0074 0.0479 ± 0.0085 64.10 0.0491 ± 0.0084 0.0519 ± 0.0096

Ensemble 72.80 0.0338 ± 0.0082 0.0381 ± 0.0087 67.31 0.0459 ± 0.0087 0.0551 ± 0.0090

BIM

No Defense 30.70 0.1128 ± 0.0106 0.0963 ± 0.0102 17.86 0.1218 ± 0.0112 0.1279 ± 0.0105

MagNet 67.08 0.0475 ± 0.0079 0.0501 ± 0.0081 63.55 0.0502 ± 0.0085 0.0570 ± 0.0089

ShieldNets 68.87 0.0432 ± 0.0090 0.0468 ± 0.0083 64.92 0.0496 ± 0.0098 0.0552 ± 0.0094

Ensemble 71.21 0.0315 ± 0.0081 0.0364 ± 0.0094 68.05 0.0453 ± 0.0082 0.0544 ± 0.0083

PGD

No Defense 25.08 0.1031 ± 0.0102 0.1056 ± 0.0112 20.40 0.1187 ± 0.0107 0.1203 ± 0.0112

MagNet 66.89 0.0488 ± 0.0091 0.0516 ± 0.0092 61.34 0.0518 ± 0.0091 0.0581 ± 0.0101

ShieldNets 68.30 0.0471 ± 0.0080 0.0535 ± 0.0086 62.96 0.0491 ± 0.0104 0.0573 ± 0.0087

Ensemble 70.22 0.0364 ± 0.0077 0.0417 ± 0.0094 66.89 0.0472 ± 0.0095 0.0560 ± 0.0084

Table 4: Classification accuracy and uncertainty metrics of our defense on the MS-Celeb dataset with 50% overlap between

the training data of the Black box CNN (DBbox) and our defense (DDef ).

(a) (b)

(c) (d)

Figure 3: (a) Adversarial images of celebrities created using the FGSM attack with ǫ = 0.1, (b) - (d) Average purified images

after 1 - 3 iterations of purification, respectively.

(ii) rejecting the image. Hence, a natural target for an adver-

sary to beat our defense would be to adversarially attack the

Bayesian CNN. To do so, the adversary would have to create

an adversarial substitute and transfer the adversarial attacks

by probing the Bayesian CNN. But, in our approach we do

not share any information or outputs of the Bayesian CNN

as discussed in Section 3. Hence, the adversary would have

to probe the end-to-end pipeline multiple times in order to

create an adversarial substitute. Based on this we can limit

the amount of querying by setting a threshold beyond which

the adversary cannot probe the defense for a certain amount

of time [31]. From a computational resource point of view
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DBbox = Q1:100; DDef = Q101:∞ DBbox = Q1:100; DDef = 0.5 · Q1:100 + Q101:∞

t1 = 0.0588 t2 = 0.0656 t1 = 0.0588 t2 = 0.0656

Attack Defense
Acc.

(%)

Avg. Aleatoric

uncertainty

Avg. Epistemic

uncertainty

Acc.

(%)

Avg. Aleatoric

uncertainty

Avg. Epistemic

uncertainty

FGSM

No Defense 7.81 0.1603 ± 0.0176 0.1574 ± 0.0187 7.81 0.1559 ± 0.0179 0.1511 ± 0.0185

MagNet 41.19 0.1228 ± 0.0113 0.1214 ± 0.0106 43.32 0.1150 ± 0.0142 0.1181 ± 0.0110

ShieldNets 40.78 0.1252 ± 0.0129 0.1168 ± 0.0133 43.66 0.1128 ± 0.0136 0.1157 ± 0.0124

Ensemble 42.58 0.1129 ± 0.0117 0.1071 ± 0.0104 44.14 0.1108 ± 0.0125 0.1122 ± 0.0113

BIM

No Defense 5.36 0.1752 ± 0.0204 0.1655 ± 0.0188 5.36 0.1561 ± 0.0166 0.1683 ± 0.0191

MagNet 40.11 0.1314 ± 0.0181 0.1351 ± 0.0152 40.25 0.1277 ± 0.0122 0.1203 ± 0.0120

ShieldNets 41.59 0.1360 ± 0.0146 0.1277 ± 0.0147 42.12 0.1216 ± 0.0111 0.1308 ± 0.0126

Ensemble 42.04 0.1153 ± 0.0140 0.1201 ± 0.0135 43.20 0.1105 ± 0.0113 0.1116 ± 0.0129

PGD

No Defense 5.62 0.1644 ± 0.0231 0.1714 ± 0.0197 5.62 0.1603 ± 0.0156 0.1687 ± 0.0174

MagNet 38.30 0.1439 ± 0.0158 0.1426 ± 0.0155 40.46 0.1457 ± 0.0141 0.1365 ± 0.0138

ShieldNets 40.36 0.1392 ± 0.0163 0.1408 ± 0.0142 40.37 0.1343 ± 0.0149 0.1388 ± 0.0131

Ensemble 41.37 0.1274 ± 0.0131 0.1316 ± 0.0129 41.64 0.1235 ± 0.0137 0.1327 ± 0.0134

Table 5: Classification accuracy and uncertainty metrics of our defense on the MS-Celeb dataset with no overlap and 50%

overlap between the training data of the Black box CNN (DBbox) and our defense (DDef ) when ǫ = 0.2.

(a) (b)

Figure 4: (a) Adversarial Images of celebrities created using the FGSM attack with ǫ = 0.2, and (b) Corresponding images

that were rejected after 4 iterations of purification

Theagarajan et al. [62] and Song et al. [57] showed that it is

computationally expensive and requires a lot of querying to

generate adversarial examples when the meta-outputs (out-

puts of the Bayesian CNN and ensemble of image purifiers)

of the defense are not shared with the adversary. It took 27

hours for Theagarajan et al. [62] to create 50 successful ad-

versarial attacks and it took 10 hours for Song et al. [57]

to create 100 successful adversarial attacks when the infor-

mation and outputs of the defense algorithm are not shared

with the adversary. In our approach we have an ensemble

of adversarial defenses and there are multiple iterations of

purification and these outputs are not shared with the ad-

versary making it even more computationally expensive to

probe and attack our defense compared with the other de-

fenses discussed in this paper.

5. Conclusions

This paper presented a novel framework for defending

Black box face biometrics classifiers from adversarial at-

tacks using an ensemble of defenses whose performance is

validated over multiple iterations using Bayesian uncertain-

ties and is able to quantify the amount of adversarial com-

ponent in the resulting image. Experimental results showed

that the proposed approach is able to consistently detect ad-

versarial attacks, purify/reject them and outperforms indi-

vidual stand-alone black box defenses. Furthermore, the

results showed that crowd sourced images that are avail-

able in the public domain can be used to effectively distill

the knowledge of the Black box classifier and still achieve

reasonable performance in defending against adversarial at-
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tacks.
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[28] José Miguel Hernández-Lobato and Ryan Adams. Proba-

bilistic backpropagation for scalable learning of Bayesian

Neural Networks. In International Conference on Machine

Learning, pages 1861–1869, 2015.
[29] Geoffrey Hinton, Li Deng, Dong Yu, George E Dahl, Abdel-

Rahman Mohamed, Navdeep Jaitly, Andrew Senior, Vin-

cent Vanhoucke, Patrick Nguyen, Tara N Sainath, and Brian

Kingsbury. Deep Neural Networks for acoustic modeling

in speech recognition: The shared views of four research

groups. IEEE Signal Processing Magazine, 29(6):82–97,

2012.
[30] Ruitong Huang, Bing Xu, Dale Schuurmans, and Csaba

Szepesvári. Learning with a strong adversary. arXiv preprint

arXiv:1511.03034, 2015.
[31] Andrew Ilyas, Logan Engstrom, Anish Athalye, and Jessy

9



Lin. Black-box adversarial attacks with limited queries and

information. arXiv preprint arXiv:1804.08598, 2018.
[32] Chi Jin, Ruochun Jin, Kai Chen, and Yong Dou. A com-

munity detection approach to cleaning extremely large face

database. Computational Intelligence and Neuroscience,

2018.
[33] Andrej Karpathy, George Toderici, Sanketh Shetty, Thomas

Leung, Rahul Sukthankar, and Li Fei-Fei. Large-scale video

classification with Convolutional Neural Networks. In Pro-

ceedings of the IEEE Conference on Computer Vision and

Pattern Recognition, pages 1725–1732, 2014.
[34] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Im-

agenet classification with deep Convolutional Neural Net-

works. Advances in Neural Information Processing Systems,

pages 1097–1105, 2012.
[35] Solomon Kullback and Richard A Leibler. On informa-

tion and sufficiency. The Annals of Mathematical Statistics,

22(1):79–86, 1951.
[36] Alexey Kurakin, Ian Goodfellow, and Samy Bengio. Ad-

versarial examples in the physical world. arXiv preprint

arXiv:1607.02533, 2016.
[37] Alexey Kurakin, Ian Goodfellow, and Samy Bengio. Ad-

versarial machine learning at scale. arXiv preprint

arXiv:1611.01236, 2016.
[38] Fangzhou Liao, Ming Liang, Yinpeng Dong, Tianyu Pang,

Xiaolin Hu, and Jun Zhu. Defense against adversarial attacks

using high-level representation guided denoiser. In Proceed-

ings of the IEEE Conference on Computer Vision and Pattern

Recognition, pages 1778–1787, 2018.
[39] Weiyang Liu, Yandong Wen, Zhiding Yu, Ming Li, Bhiksha

Raj, and Le Song. Sphereface: Deep hypersphere embed-

ding for face recognition. In Proceedings of the IEEE Con-

ference on Computer Vision and Pattern Recognition, pages

212–220, 2017.
[40] Jiajun Lu, Theerasit Issaranon, and David Forsyth. Safe-

tynet: Detecting and rejecting adversarial examples robustly.

In Proceedings of the IEEE International Conference on

Computer Vision, pages 446–454, 2017.
[41] Jiajun Lu, Hussein Sibai, and Evan Fabry. Adversarial ex-

amples that fool detectors. arXiv preprint arXiv:1712.02494,

2017.
[42] Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt,

Dimitris Tsipras, and Adrian Vladu. Towards deep learn-

ing models resistant to adversarial attacks. In International

Conference on Learning Representations, 2018.
[43] Dongyu Meng and Hao Chen. MagNet: A two-pronged de-

fense against adversarial examples. In Proceedings of the

ACM SIGSAC Conference on Computer and Communica-

tions Security, pages 135–147, 2017.
[44] Md Ashraful Alam Milton. Evaluation of momentum di-

verse input iterative fast gradient sign method (M-DI2-

FGSM) based attack method on MCS 2018 adversarial at-

tacks on black box face recognition system. arXiv preprint

arXiv:1806.08970, 2018.
[45] Nina Narodytska and Shiva Kasiviswanathan. Simple black-

box adversarial attacks on deep Neural Networks. In Pro-

ceedings of the IEEE Conference on Computer Vision and

Pattern Recognition, pages 1310–1318, 2017.
[46] Rodrigo Frassetto Nogueira, Roberto de Alencar Lotufo, and

Rubens Campos Machado. Fingerprint liveness detection us-

ing Convolutional Neural Networks. IEEE Transactions on

Information Forensics and Security, 11(6):1206–1213, 2016.
[47] Tribhuvanesh Orekondy, Bernt Schiele, and Mario Fritz.

Knockoff Nets: Stealing functionality of black-box models.

In Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition, pages 4954–4963, 2019.
[48] Federico Pala and Bir Bhanu. Iris liveness detection by rela-

tive distance comparisons. In Proceedings of the IEEE Con-

ference on Computer Vision and Pattern Recognition Work-

shops, pages 162–169, 2017.
[49] Federico Pala and Bir Bhanu. On the accuracy and robust-

ness of deep triplet embedding for fingerprint liveness detec-

tion. In IEEE International Conference on Image Process-

ing, pages 116–120, 2017.
[50] Nicolas Papernot, Patrick McDaniel, Ian Goodfellow,

Somesh Jha, Z Berkay Celik, and Ananthram Swami. Practi-

cal black-box attacks against machine learning. In Proceed-

ings of the ACM Asia Conference on Computer and Commu-

nications Security, pages 506–519, 2017.
[51] Nicolas Papernot, Patrick McDaniel, Xi Wu, Somesh Jha,

and Ananthram Swami. Distillation as a defense to adver-

sarial perturbations against deep Neural Networks. In IEEE

Symposium on Security and Privacy, pages 582–597, 2016.
[52] Edward Raff, Jared Sylvester, Steven Forsyth, and Mark

McLean. Barrage of random transforms for adversarially

robust defense. In Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition, pages 6528–

6537, 2019.
[53] Yongming Rao, Jiwen Lu, and Jie Zhou. Attention-aware

deep reinforcement learning for video face recognition. In

Proceedings of the IEEE International Conference on Com-

puter Vision, pages 3931–3940, 2017.
[54] Ambrish Rawat, Martin Wistuba, and Maria-Irina Nicolae.

Adversarial phenomenon in the eyes of Bayesian deep learn-

ing. arXiv preprint arXiv:1711.08244, 2017.
[55] Florian Schroff, Dmitry Kalenichenko, and James Philbin.

FaceNet: A unified embedding for face recognition and clus-

tering. In Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition, pages 815–823, 2015.
[56] Kumar Shridhar, Felix Laumann, and Marcus Liwicki. Un-

certainty estimations by softplus normalization in Bayesian

Convolutional Neural Networks with variational inference.

arXiv preprint arXiv:1806.05978, 2018.
[57] Yang Song, Taesup Kim, Sebastian Nowozin, Stefano Er-

mon, and Nate Kushman. PixelDefend: Leveraging genera-

tive models to understand and defend against adversarial ex-

amples. In International Conference on Learning Represen-

tations, 2018.
[58] Thilo Strauss, Markus Hanselmann, Andrej Junginger, and

Holger Ulmer. Ensemble methods as a defense to adversarial

perturbations against deep Neural Networks. arXiv preprint

arXiv:1709.03423, 2017.
[59] Yi Sun, Yuheng Chen, Xiaogang Wang, and Xiaoou Tang.

Deep learning face representation by joint identification-

verification. In Advances in Neural Information Processing

Systems, pages 1988–1996, 2014.
[60] Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan

Bruna, Dumitru Erhan, Ian Goodfellow, and Rob Fergus.

10



Intriguing properties of Neural Networks. arXiv preprint

arXiv:1312.6199, 2013.
[61] Guanhong Tao, Shiqing Ma, Yingqi Liu, and Xiangyu

Zhang. Attacks meet interpretability: Attribute-steered de-

tection of adversarial samples. In Advances in Neural Infor-

mation Processing Systems, pages 7717–7728, 2018.
[62] Rajkumar Theagarajan, Ming Chen, Bir Bhanu, and Jing

Zhang. Shieldnets: Defending against adversarial attacks

using probabilistic adversarial robustness. In Proceedings

of the IEEE Conference on Computer Vision and Pattern

Recognition, pages 6988–6996, 2019.
[63] Simen Thys, Wiebe Van Ranst, and Toon Goedemé. Fool-
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